

Cyberbullying:

- technology. It affects mostly teens.
- been cyberbullied 16% have cyberbullied.

Data:

- Our goal is to detect highly negative posts.
- among them.
- finding highly negative posts.

Features:

Classification:

- LinearSVM classifier.
- {1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100, 1000, 10000}.

¹Department of Computer and Information Science University of Alabama at Birmingham sprague@cis.uab.edu diazspra@uab.edu

	Ask.fm		Kaggle		Wikipedia	
Feature	AUC	F-score	AUC	F-score	AUC	F-score
Baseline	0.567	0.27	0.597	0.36	0.610	0.28
Unigram (U)	0.768	0.57	0.813	0.71	0.882	0.72
Char 4gram (C4)	0.748	0.56	0.812	0.72	0.879	0.73
CT + C4 + C5	0.734	0.55	0.811	0.73	0.866	0.75
SentiWordNet (SWN)	0.602	0.35	0.575	0.39	0.632	0.30
LIWC	0.662	0.42	0.715	0.57	0.787	0.53
Writing Density (WR)	0.564	0.30	0.566	0.42	0.682	0.31
Word2vec (W2V)	0.745	0.51	0.759	0.63	0.854	0.61
Doc2vec (D2V)	0.750	0.52	0.792	0.66	0.886	0.60
LDA	0.626	0.37	0.559	0.40	0.577	0.26
LIWC + E + SWN + W2V + D2V	0.780	0.56	0.799	0.68	0.889	0.65
U + C4 + QA + LIWC + E + SWN + W2V + D2V	0.785	0.57	N/A	N/A	N/A	N/A
C4 + U + QA + E	0.766	0.59	N/A	N/A	N/A	N/A
All Features	0.756	0.56	0.798	0.71	0.882	0.75

Table1: Classification results for invective class

- The most challenging instances are:
- Single profane word answers
- words
- Posts with mixture of politeness and profanity
- Post with bad words that are offered as compliments

Negativity of Words

For post with single profane word: $NUR(w_i) =$

bad word	negativity		
as**ole	51.16%		
kill	12.47%		
f*ck	33.05%		
n**ger	13.30%		
sh*t	15.23%		
cut	4.85%		

Table 2: Degree of negativity for bad words

- Our model can be successfully applied to other datasets.
- It seems it is much harder to detect nastiness in shorter texts.
- culture.

Results

Question and answer pairs in which users joke around with use of foul

 $Count(PI,w_i)$ $Count(PI,w_i)+Count(PN,w_i)$

bad word	Negativity
b*tch	41.65%
a*s	24.77%
die	7.41%
s*ck	26.88%
h*e	36.58%
stfu	51.55%

Conclusion

Analyzing the degree of negativity for bad words reflects a sexualized teen