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Cyberbullying:
uCyberbullying is bullying that takes place using electronic

technology. It affects mostly teens.
u 26.3 % high school and middle school students have

been cyberbullied – 16% have cyberbullied.

u Our model can be successfully applied to other datasets.
u It seems it is much harder to detect nastiness in shorter texts.
u Analyzing the degree of negativity for bad words reflects a sexualized teen

culture.
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Original Data:
u 586K question-answer pairs from 1,954 random users of

Ask.fm from 28#$ January - 14#$ February, 2015.

u Inter-annotation agreement kappa score is 0.453.

u The most challenging instances are:
§ Single profane word answers
§ Question and answer pairs in which users joke around with use of foul

words
§ Posts with mixture of politeness and profanity
§ Post with bad words that are offered as compliments
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Fig	1:	Data	Distribution

Invective
Neutral

Ask.fm Kaggle Wikipedia
Feature AUC F-score AUC F-score AUC F-score
Baseline 0.567 0.27 0.597 0.36 0.610 0.28
Unigram	(U) 0.768 0.57 0.813 0.71 0.882 0.72
Char	4gram	(C4) 0.748 0.56 0.812 0.72 0.879 0.73
CT	+	C4	+	C5 0.734 0.55 0.811 0.73 0.866 0.75
SentiWordNet (SWN) 0.602 0.35 0.575 0.39 0.632 0.30
LIWC 0.662 0.42 0.715 0.57 0.787 0.53
Writing	Density	(WR) 0.564 0.30 0.566 0.42 0.682 0.31
Word2vec	(W2V) 0.745 0.51 0.759 0.63 0.854 0.61
Doc2vec	(D2V) 0.750 0.52 0.792 0.66 0.886 0.60
LDA 0.626 0.37 0.559 0.40 0.577 0.26
LIWC	+	E	+	SWN	+	W2V	+	D2V 0.780 0.56 0.799 0.68 0.889 0.65
U	+	C4	+	QA	+	LIWC	+	E	+	SWN	+	
W2V	+	D2V

0.785 0.57 N/A N/A N/A N/A

C4	+	U	+	QA	+	E 0.766 0.59 N/A N/A N/A N/A
All	Features 0.756 0.56 0.798 0.71 0.882 0.75

Table1:	Classification	results	for	invective	class

bad	word negativity
as**ole 51.16%
kill 12.47%
f*ck 33.05%

n**ger 13.30%
sh*t 15.23%
cut 4.85%

bad	word Negativity
b*tch 41.65%
a*s 24.77%
die 7.41%
s*ck 26.88%
h*e 36.58%
stfu 51.55%

Table	2:	Degree	of	negativity	for	bad	words
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Fig	2:	Average	length	of	posts	and	words	

Data:
u Our goal is to detect highly negative posts.
u We focus on teens by using the platform that is popular

among them.
u We use data contain profanity to increase the chance of

finding highly negative posts.

Features:
• Lexical (word n-gram, character n-gram, k-skip n-

gram)
• POS Colored n-gram
• Sentiment (SentiWordNet)
• Domain (Question-Answer)
• Emoticon
• LIWC
• Writing Density
• Hand-crafted (Patterns)
• Embedding (W2V, D2V)
• Topic Modeling (LDA)

Classification:
u We follow a machine learning approach using a

LinearSVM classifier.
u We tune classifier C parameter with a grid search over

{1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100, 1000, 10000}.
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